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to be reproduced in difference form. This function is substituted into (2.3), which in the 
long run results in an inequality of the type (1.7). Therefore, the presence of square-sum- 
mable second derivatives along the tangent directions and mixed derivatives, is established. 
From the conditions for the equilibrium equations to be valid near the boundary we also obtain 
the existence of square-summable second derivatives along the normal. 

Construction of the measure and its properties. We will formulate a theorem on the exist- 
ence of a measure characterizing the action of one body on another. Exactly as in the problem 
of the interaction between an elastic and a rigid body, the case of the distinct location of 

re, rO, r,, rO,, rW, ,must be examined separately. 
First, for each point s,E ar, let a neighbourhood d(z,) exist that possesses the 

property that d(z,) fl r c re U r. and d (x0) n r’ c re u ros. Hence, the following theoremholds: 
Theorem 5. A measure p can be defined on a a-algebra of Bore1 subsets r, such that for 

arbitrary functions cp = (I*, V')E HnC (r,) the following representation holds (9~ K is the 
solution of (2.3)): 

(dE($). rp)= - \ (yn - y'n)dbr 
+= 

(2.4) 

The properties of the measure constructed in such a manner are determined by the smooth- 
ness of the solution. In particular, the presence of second derivatives for the solution near 
the contact boundary enables us to prove that the singular component of the measure p equals 
zero at the points re \ ar,. The reasoning is similar to that used at the end of Sect.1. The 
density of the measure p turns out to equal -aII(a)nlnl. 

In conclusion, we consider the situation when a neighbourhood d(x,) exists for an arbitr- 
ary point x0 E ar, for which d (x0) n r c r, u ro, d (x0) n r’ c rc u ros. 

Theorem 6. A measure p can be defined on a a-algebra of Bore1 subsets r, \ ar, such 
that for any function cp = (v,v')ea n C,(I;) the representation (2.4) holds. The singular 
component of this measure is zero, 
any compact B c rc \ N,. 

and the density equals --alj(o)npl, where p(B)< +CQ for 
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ON THE FORMULATION AND INVESTIGATION OF A SPATIAL CONTACT PROBLEM 
FOR ELASTIC BODIES UNDER MIXED FRICTION CONDITIONS* 

1.1. ICDDISH 

A spatial contact problem is formulated and investgated for rough elastic 
bodies which touch each other under mixed friction conditions: the elastic 
bodies are separated in one part of the contact domain by a layer of 
viscous incompressible liquid (lubricant), while in the other they are in 
direct contact (such conditions are characteristic for roller bearings, 
gear transmissions, etc.). The problem is reduced to a system of non- 
linear integro-differential and integral equations and inequalities in the 
contact domain, part of the external boundary, and a number of inner 
boundaries that are unknown in advance, but separate the lubricated and 
unlubricated zones. Special cases are problems of dry and completely 

*Prikl.Matem.Mekhan .,47,6,1006-1014,1983 



802 

lubricated contact. A formulation is given for the problem for the case 
when the materials of the bodies are identical. The problem of mixed 
friction is considered in strongly drawn out contact. Sections of the 
contact domain in which the interaction between the bodies is direct or 
by means of the lubrication layer are investigated using asymptotic methods. 

1. Formulation of the problem. We introduce a moving system of coordinates (see 
the sketch) in the contact domain. We direct the r-axis from the lower to the upper body so 
that it passes through the centres of curvature of the bodies making contact. We superpose 
the xy plane on the middle plane in the lubrication layer z=O. Here the equations of the 
surfaces bounding the bodies in contact have the form z =+ l/,h(z,y) , respectively, where 

h = h (2, V) is a function of the gap between the bodies making contact. 
We will assume the contact to be local and replace the bodies making contact by half- 

spaces. We will approximate the micro-roughness covering the surfaces of the bodies making 
contact by a power-law function ofthepressurepwith exponent a,O< CC < 1 /l/. It is assumed 
that slow stationary motion of the surfaces of the bodies making contact occurs with linear 
velocities Ur= (n,, %) and ut = (n,, ~2). It is assumed that the slippage velocity is small 
compared with the rolling velocity, and that the inertial forces can be neglected compared 
with the viscous forces in the lubricant /2, 3/. It is also assumed that the lubricant between 
the bodies possesses the properties of an incompressible Newtonian liquid and is under iso- 
thermal conditions, where the layer thickness is small compared with the characteristic dimen- 
sions of the contact region /2, 3/. 

to 
With these assumptions the tangential stress vector in the lubricant layer is proportional 

the gradient of the linear velocity of the lubricant particles, i.e., 

f = p adz (T = (TX,, Tyzh u = (u, 4) (1.1) 

where p is the viscosity of the lubricant. 
Where there is direct contact between the elastic bodies, dry 

friction forces occur. In general, the direct contact domain is 
divided into adhesion and slippage zones in which the relative slip- 
page of the bodies s(z,y) is, respectively, zero and different 
from zero, where the friction stress in the latter case obeys 
Coulomb's law 

t = fpsi la I, Is I>0 (1.2) 

V=fhA 1s I) is the coefficientof friction. The inequality 

Irl.Sfp, IsI= (1.3) 

is here satisfied in the adhesion zone. 
We will examine the boundary conditions for the liquidvelocity 

u. Because of the non-penetration and adhesion conditions, and 
taking into account the assumption that grad h is small, we obtain 
for the components of the particle velocity w = (u,u,w) of the 
liquid on the friction surfaces 

u = U,, w = --'I, (u,, grad h), z = -hi2 

u = u2, w = Vz (II,, grad h), z = hi2 

(1.4) 

Carrying out standard computations /3/ taking the above assumptions and conditions (1.4) 
into account, we find after integrating the continuity equation div w = Cl with respect to z 
between the limits -h/2 and hi2 

&Qx+ -$Qii=O, 
R[2 

Q=(Qx,Qv)= \ u(x,yt:)d; (1.5) 
--h/Z 

Furthermore, integrating the equations of motion taking into account a number of the 
assumptions made above and conditions (1.4), we find 

(1.6) 

and we obtain for the liquid mass flow rate 

(1.7) 

Therefore, the Reynolds equation takes the form 
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(1.8) 

The smallness of the slippage velocity compared with the rolling velocity was also taken 
into account in deriving (1.8). Equation (1.8) obviously holds in those zones of the contact 
domain in which h> 0. 

For simplicity, we will assume, when deriving the equation to determine the gap h and 
when formulating the problem of determining the tangential stress T and the slippage velocity 

s, that the materials of the elastic bodies are identical. The problem of determining the 
contact pressure and the gap then becomes separate from the problem of determining the tangent- 
ial stress and the slippage velocity in the contact domain. 

We will write down the difference in the elastic displacements w= (.rJ,_ u,, V,_ V,,W, - 

WI) of points on the upper and lower body surfaces. Following /4/, we obtain 

(1.9) 

Here T+ = (rxz*, ryr+) and T- = (z%,-, Ty,-) are the tangential stresses acting on the upper 
and lower surfaces making contact, respectively, and determined by the relationships (l.l)- 
(1.3). The contact domain E = E, IJ ET, where &is a zone of the contact domain in which 

P :- 0 and E, is a zone of the contact domain in which Ir I> 0. 
From the kinematic relationships we obtain* for the slippage velocity s, neglecting 

second-order infinitesimals in ) u2- IQ 1, 

s='/*(ur -i-U% V)(U, - VI) + u2 -u1 (1.10) 

u2 = (U,, I;,), u, =(Ur, VI), v = ($ ) g, 

Now taking account of the collapse of the microroughness, and we find for the gaph (see 
(l-l), (1.6) and (1.9)) 

h=h,+kp=-:- (1.11) 

Here ho is a constant not known in advance, k and a are coefficients in the lawofcollapse 
of the microroughness,R,' and R,'are the reduced radii of curvature of the bodies making con- 

tact, and G and v are the shear modulus and Poisson's ratio for the body materials. 
In the zone where there is no lubricant, we have h E 0, where h is determined from (1.11). 
The statics condition and the boundary conditions 

# p(x’,y’)dx’dy’=PP; pJr=O 

P 

(1.12) 

must be supplemented by the equations and inequalities mentioned , and r, is the given boundary 
of the entrance into the contact domain E, if 

Air, >o and (Qqn)Iri <O 

dp 
dn r*= I 0, if hlr.>O and (Q,n)Ir,>o 

* Gol'dshtein R.V., Zazovskii A.F., Spektor A.A. and Fedorenko R.P., Solution of spatial con- 
tact problems of rolling with slippage and adhesion by a variational method. Preprint No.134, 
Inst. Problem Mekhaniki Akad. Nauk SSSR, Moscow, 66p., 1979. 



804 

Here P is the compressive force of the bodies making contact,r is the boundary of the 
contact domain, E,,r, is the boundary of the entrance domain, a part of the boundary I',r, 
is the boundary of the exit domain, a part of the boundary r , and n is the external unit 
normal to the boundary I?. 

Therefore, to determine p and h we obtain the following relationships: if h>O, then 
(1.8) and (1.11) hold, otherwise h = 0 and (1.11) is used to determine p for h = 0; here 
the function h is calculated using (1.11). The conditions (1.12) are added to the relations 
mentioned. 

After having determined the pressure p and the gap h in the case of identical or incomp- 
ressible materials of the bodies, it is then possible to find the friction stress and the 
slippage velocity. By using relations (l.&)-(1.3), (l-6), (1.9) and (l-lo), the problem of 
determining the tangential stress and the slippage velocity in the contact domain reduces to 
a system of non-linear equations and inequalities 

r = poih when h > 0 

ITlS<fP (lsI=O), r=fps/js( (lsl>O) when h=O 

s=--B(r)-c-v, ItlJ&q=O 

(1.13) 

B(r)=qq~D~(z-x’,y-y’)7(x’,y’)dz’dy’+ 

4 
lJ1 + I’lt * 

2 ss Ds(x-x'ty - y’) 7 (t’, y’) ds’ dy’ 

ET 

The elements of the matrices D'and Da have the form * 

(1.14) 

Dll,_ _ cos0(v- i - 3vsin*0) sine (v - i -33vde) 
nefl 

, Dl,a = - 
nGR’ 

D,lz = D&= = - 
VCOS~(~ -33iaat3) 

ZGP 

(v = u-2 - Ul is the velocity vector of "rigid" slippage, and aE, is the boundary of the domain 
E, not known in advance), 

After determining the slippage vector in the sane where there is lubricant, i.e., h>O, 
the friction stress on the surfaces can be represented in the form 

7*=T +&gradp 

We will make a number of remarks of a physical nature concerning the laws of friction 
(l.l)-(1.3). Because of adsorption effects, the boundary layers of lubricants acquire the 
properties of structural anisotropic fluids. As a number of experimental investigations /5/ 
shows, a continuous transition from liquid (relationship (1.1)) to dry friction (relationships 
(1.2) and (1.3)) occurs in a small number of molecular liquid layers on the boundary of the 
solid. The specific features of this transition have been studied to only a small extent and 
depend on the adsorption properties of the lubricant-solid pair. 

We will later require continuity of the passage of (1.1) into (1.2) and (1.3), i.e. con- 
tinuity of the tangential stresses 7 on the lines separating the zones with h> 0 and h = 0. 

we will obtain certain corollaries resulting from the condition of continuity of the 
tangential stresses. We consider the part of the boundary between the lericated and unlubric- 
ated contact zones on which siippage occurs, i.e., IsI>O. Then using (1.2) and (1.5) and 
starting from the continuity of the tangential stress, we obtain p=p(p,h) and 

~~P/A=fP/lsl* Isl>O (1.16) 

On the other hand, for an analogous section of the boundary h = 0 on which adhesion 
Is.1 = 0 holds, by taking account of the continuity of the friction stress and (1.3) and (1.15) 
we find 

h>,rn_(PIsllh-~fp)<O~ IsI=" (1.17) 

* See the previous footnote. 
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Relations (1.16) and (1.17) indicate the structural properties of the lubricant boundary 
layers; the former is confirmed by the graph of the dependence of the coefficient of friction 
on the layer thickness (/5/, p.316). 

Therefore, the relations p=p @,h) and f = f(p, (s I) that satisfy (1.16) and (1.17) on 
the boundaries of the *lubricated" and "unlubricated" zones, must be appended to the formula- 
tion described above for the problem of determining r and s (1.131, (1.141 taking the continu- 
ity of T into account on the boundaries of zones with h>O and h = 0 . 

2. The case of contact strongly drawn out in the direction of the y axis. 
We will introduce the dimensionless variables 

HereK(e)and E(e)are the complete elliptic integrals of the first and second kinds, the 
constant 6 is determined from the equation &tg,(&)= R,‘IR,‘, aa and bg are the semi-axes of the 
Hertz contact ellipse, and px is the maximum Zlertz stress. 

We will consider the case of strongly drawn out contact when set, y- 6, and V,#6. 
It is more convenient to write the equation for h in a form in which Ho is the dimensionless 
thickness of the layer at the exit from the contact domain, f .e., at the point (a+,~)= rO. 
Here, we have H, = H, (y). When S((1 the integrals in the equations of the problem can be 
simplified as in /6f. Then taking account of the above-mentioned transformation of the 
equation for h we write the problem of determining the principal 
p and h in the form 

terms in the asymptotics of 

(2.1) 

H ,=o (2.2) 

cP s p(t,y)dt= $- PO0 far)+ P (f$v Y) = P fc,r Yf = 0 (2.3) 

&,,I/)/dz=O* Ho>0 (2.4) 

cP 
Ho@ -+hpa+r'-CCP,t&f P(1*y)in-&.- 

eP 
dt+GS hvdt (2.5) 

OP I 

It is taken into account in (2-l)-(2.5) that if the gap h vanishes at a certain point, 
then within the framework of the plane problem this will imply h = 0 in the whole contact 
domain, and therefore, H, = 0. This results from the fact that the liquid mass flow rate 
through the gap h into the whole domain is constant in the plane case. Morewer, the follow- 
ing notation is introduced in (2.1)-(2.5): a, ana cp are, respectively, the abscissas of 
the entrance and exit points of the contact domain in the section @ = con& in which p>O, 
i.e., up = up (g) and cp = cp W, and PW bar) is a function unknown in advance the character- 
izes the force applied to this section. 

In exactly the same way, we obtain '$ =$ = 0 for the principal terms of the asymptotics 
in the problem of determining T and 6 for &<l,y- 6 , and v,,- 6 and 

7% = &hwhenH, > 0 

I % I -< fP 6, = ot, ~,=fpsigns,O~,I>O)whenH~=O 

(2.6) 
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% 
s,=-2$0(1-v) 

s 
‘I cc Y) 

-+- at + *;* 7, (Gr Y) = %(C,, Y) = 0 
07 

Here a, and c, are,respectively, the coordinates of the beginning and end of the contact 
domain outside which we have T, = 0. 

The systems of equations and inequalities (2-l)-(2.5) and (2.6) hold everywhere in the 
contact domain outside small neighbourhoods, of the order of 6 , of the point y = &I and 
the other contact zones abutting on the boundaries with radius of curvature of the order of 6. 
Moreover, it follows from the systems mentioned that in general the contact domain is divided 
into a number of alternating strips filled with lubricant and strips in which there is no 
lubricant. 

Starting from (2.1)-(2.6) and relations (1.16), (1.17), the continuity of the pressure 
p and the slippage velocity vector component s, can be shown for the passage through the 
section y = COllst in which Ho vanishes. 

The problem of determining p and h will be investigated below. 
We will consider the case when there is no lubricant anywhere in the contact domain i.e., 

H, = 0. It is here necessary to solve (2.2) and (2.3). Taking into account that the shape 
of the bodies making contact is described by an even function, we obtain cp = - ap. Then by 
transformation of variables 

(Z' - cp, cJ= U(Qr -cc* co), 

P = PO0 (Y) POf 

(2.7) 

we reduce (2.2) and (2.3) to a form agreeing , .apart from the notation, with the form of the 
corresponding equations of the problem with a previously unknown contact domain in /7/. Con- 
sequently, the results presented in /7/ can be obtained when studying (2.2) and (2.3) by the 
methods of merging and regular asymptotic expansions. In particular, when h, =&(6)<1,oc> 
3 and h, = All (6) 3 1 the solution of the problem is constructed by regular asymptoticmethods 
in analytic form, and when h, = h,(6)< 1 and O<cz <3 by the method of merging asymptotic 
expansions. 

We will consider the case when there is a non-zero lubricant layer everywhere in the 
contact domain, i.e., H,>O. It is here necessary to investigate (2.1), (2.3)-(2.5). By 
transformation of variables (2.7) 

(2.8) 

(2.1), (2.3)-(2.5) can be reduced to equations analogous (taking the notation into account) 
to the equations in /8/ for F(r) =z. The asymptotic analysis of the equations mentioned is 
described in /8/ for the case of heavy loading, i.e., when T/o = V,(&)<l or ~(p”,h)>l for 
p0 - i. 

Omitting the subscripts 0 and p, we will write the equations of the problem that have 
been transformed taking (2.7) and (2.8) into account, in the form 

H,(h-i)=~pCLf~~ 
(I x 

P (a, Y) = p (cv Y) 
ap cc3 V) 3 r=o. p (t, y) at = + 

x 

(2.9) 

(2.10) 

(2.11) 

It follows from (2.10) that h (c, y) 7 1. Consequently, by differentiating (2.10) with 
respect to x, we obtain a differential equation in h(z,y).' Then by integrating itwith respect 
to h, taking the condition h(c,y) = 1 into account, we find 

(2.12) 

We will consider (2.9), (2.12), (2.11) in the case of heavy loading. We shall regard 
the contact as being under heavy loading if the small parameter o = 0 (6) enters the equa- 
tions of the problem (its physical meaning is indicated above), and the estimate /8/ 
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H,(h-I)<1 when x-a>Eq,c-X>Ee, (2.13) 

holds in the domain far from the contact boundaries. 
Here Ep = E*(O)< 1 and ep = eB (0)s 1 are the characteristic dimensionsoftheentrance 

and exit zones of the contact domains that are boundary layers in the neighbourhoods of the 
points r=a and z=c. 

We determine the asymptotic form of the solution of the problem in the outer domain,i.e., 
far from the contact boundary. Then, by integrating (2.10) with respect to h taking the esti- 
mate (2.13) into account in the outer domain, we obtain equations for the degenerate solution 

2 = 
y P&Y)ln,:Z:, s - Ia + Hoeopo (G Y)] , f PO (t, y) dt = + 

a (1 

which can be reduced by differentiation and subsequent transformation to the form 

hpo= - H&,po + x2 - c2 + + s’ po (t, y) lr+- at = 
a 

(2.14) 

(2.15) 

hpoa (c, y) - Hof3oPo (G Y) 
c 

s po (L y) dt = + 
(L 

We will consider the case when 8, = 0 and O<a (I. A further asymptotic analysis 
evidently agrees completely with that given in /8/ in which two closed systems of equations 
for the principal terms of the pressure and gap asymptotics are obtained that hold asymptotic- 
ally in the entrance and exit zones. Moreover, an estimate is obtained in /8/ for the thick- 
ness of the lubricant layer Ho 

Ho = A (~Eqa)“‘, A = A (a,, A,, a) u 1 when o < 1 (2.16) 

where s& V's4 for oil deficiency conditions and se= p*' for flood lubrication conditions. 
The case of incompressible materials (8, = 0) was considered above. The case of compres- 

sible materials (8,> 0) can also be considered by a method differing substantially from that 
described in /8/ for a = 1 and H$3, = h. 

It should be noted that the function poO (ar) in the statics condition (2.3) and relations 
(2.7) and (2.8) can be determined by an asymptotic method irrespective of whether the bodies 
are smooth or rough. 

Light loading conditions, for which direct contact does not occur, as a rule, and I'> 1 
can be examined analogously. In the case of a contact drawn out strongly in the y direction 
in each section y = const in which neighbourhoods the curvature of the entrance boundary ri 
is not large, the problem can be reduced with small error to a plane hydrodynamic contact 
problem. The plane problem obtained in this manner can be investigated by regular pertubation 
methods /9/. 

Plane problems that occur in the sections y = const were considered above, in with either 
direct contact between the bodies, or contact between the bodies through an oil interlayer 
occurs. Using the results obtained, the problem of mixed friction conditions can be considered. 
Let a0 (Y) and ep (II) be, respectively, the parts of the domain boundaries of the dry and 
lubricated contacts of rough elastic bodies. Then the bodies making contact will be separated 
by a lubricant layer in the sections Y = con& in which ap (Y) < a, (y), 
a0 (Y) 

while we have a,(y)= 
in the remaining sections y = const , and the bodies will be directly in contact. 

We present a simple example illustrating the geometry of the contact domain elucidated 
above. We assume the bodies making contact to be smooth and the liquid viscositytobe con- 
stant. We consider sections of the contact domain close to the section y=O in which the 
change in the function POO(II) can be neglected with small error. Then for oil deficiency 
conditions in the contact domain sections under consideration, the gap profile will have the 
form /a/ 

where A0 is a constant, and al(y) characterizes the local remoteness of the entrance boundary 
from the boundary of the Hertz contact ellipse. By specifying different functions a,(y) (for 



instance cc,(g) = 1.0 (-I*), Z* = cos (10~) - 0.9, where 0(z,) is the Heaviside function), we obtain 
different lubrication conditions in the contact domain. 

The dependence of the lubricant layer thickness in the contact domain on the configura- 
tion of the entrance boundary becomes evident from (2.17). It should be noted that analogous 
behaviour of the lubricant in the contact domain was noted in experiment /lo/ for oil defic- 
iency conditions. 

Note that as the force P grows, the degree of body roughness k decreases (for fixed aH, 

%f and IZ~(Y)-O,' (F), where no0 (u) is the abscissa of the Hertz contact ellipse boundary for 
smooth bodies), the parameter b characterizing the contribution of roughness to the solution 
of the problem decreases, and I~,,(Y)-Q~(Y)~ also decreases (ao(~)-ao"(br)<O). Hence, the rough 
contact zones in which dry contact occurred earlier, will be separated by a lubricant layer 
as P increasesork decreases. An analogous lubricant behaviour pattern occurs in the contact 
as Inp(y) I increases (+(y)<O) for fixed values of 00(y) and J.&O. 
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